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Abstract

An improved harmonic balance (HB) method is been presented to construct more accurate
approximations to frequencies of oscillators with non-linear fractional powers. Unlike the classical HB
method, linearization is carried out prior to harmonic balancing thus resulting in simple linear algebraic
equations instead of complicated nonlinear algebraic equations. Hence, we are able to establish the
approximate frequencies for the oscillators more directly. These approximate results are valid for various
fractional powers including the limiting case of vanishing power. Comparing with previous approximate
solutions, the approximate solutions derived here are more accurate with respect to established exact
solutions.
r 2004 Elsevier Ltd. All rights reserved.
In a previous paper, Mickens [1] studied a class of nonlinear, one-dimensional oscillators with a
single-term nonlinearity involving an inverse odd-integer power. By raising each side of the force
equation to that power and letting the coefficients of the resulting lowest-order harmonic be zero,
he obtained approximate frequencies of the oscillators. Recently, Gottlieb [2] studied frequencies
of oscillators with fractional-power nonlinearities. He obtained the corresponding direct first-
order harmonic balance (HB) approximate result by utilizing the first Fourier coefficient. He
see front matter r 2004 Elsevier Ltd. All rights reserved.
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further explored the effects on the accuracy of the HB approach for successive manipulations of
the underlying acceleration equation, such as that made in Ref. [1]. It was concluded that
application of the HB method becomes much easier if more preliminary manipulations are made
on the original differential equation before proceeding. However, the results will be significantly
less accurate and the maximum relative error is about 10%. With the direct HB approximation,
the errors of the resulting frequencies are reduced and the maximum relative error is less than
1.6%. The limiting cases of vanishing power were also investigated. The purpose of this paper
is to construct higher-order approximations to the frequencies of nonlinear oscillators with
fractional powers.

The HB method [3,4] is a procedure for determining analytical approximations to the periodic
solutions of differential equations by using a truncated Fourier series representation. Although
this method can be applied to nonlinear oscillatory problems where the nonlinear terms are not
small and no perturbation parameter is required, most of the time it is very difficult to construct
higher-order analytical approximations to the solution using this approach. This is because the
HB method requires solving analytical solutions of sets of algebraic equations with very complex
nonlinearities. Wu and Li [5] presented an approach which combines linearization of the
nonlinear oscillation equation with the method of HB. This approach has been successfully
generalized to a few classes of nonlinear oscillators [6–10]. We advance the harmonic balance
method by first imposing linearization of the governing equation in order to avoid the
shortcoming of having to solve numerically sets of equations with very complex nonlinearities.
The most significant features of this new approach are its simplicity and its excellent accuracy for
all fractional powers.

Consider the differential equation with single-term positive-power nonlinearity

d2x

dt2
þ sign ðxÞ xj jp ¼ 0 (1)

with initial conditions

xð0Þ ¼ A and
dx

dt
ð0Þ ¼ 0: (2)

Attention here is restricted primarily to rational powers less than unity. Eq. (1) states that the
restoring force is an odd function of x:

Introducing a new independent variable, t ¼ ot; we can rewrite (1) and (2) in the forms

o2x00 þ sign ðxÞ xj jp ¼ 0 (3)

and

xð0Þ ¼ A; x0ð0Þ ¼ 0; (4)

where a prime denotes differentiation with respect to t: The new independent variable t is chosen
in such a way that the solution of Eq. (3), which satisfies the assigned initial conditions in Eq. (4),
is a periodic function of t with a period of 2p: The corresponding period of the nonlinear
oscillation is given by T ¼ 2p=o: Here, both the periodic solution xðtÞ and frequency o (thus
period T) depend on A: In view of the fact that the restoring force f ðxÞ ¼ �sign ðxÞ xj jp is an odd
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function of x the periodic solution xðtÞ has the following Fourier series representation:

xðtÞ ¼
X1
n¼0

h2nþ1 cos ½ð2n þ 1Þ
t (5)

which contains only odd multiples of t:
Following the lowest-order HB method [3,4], a reasonable and simple initial approximation

satisfying conditions in Eq. (4) can be taken as

x0ðtÞ ¼ A cos t: (6)

Here, x0ðtÞ is a periodic function of t with a period of 2p: Linearizing the governing equations (3)
and (4) with respect to the correction yðtÞ at x ¼ x0ðtÞ leads to

o2x00
0 þ sign ðx0Þ x0j jp þ o2y00 þ p sign ðx0Þx0

� �p�1
y ¼ 0 (7)

and

yð0Þ ¼ 0; y0ð0Þ ¼ 0 (8)

where yðtÞ is a periodic function of t with a period of 2p to be determined later. From physics
point of view, the idea is to express the periodic solution of Eq. (3) with the assigned conditions in
Eq. (4) in the form of x0ðtÞ þ yðtÞ which is composed of the harmonics of the motion. Here, x0ðtÞ
is the main part satisfying initial conditions in Eq. (4), and yðtÞ is the correction part. Then yðtÞ
is seen to satisfy, via linearization of the governing equation (3), a forced Mathieu-type second
order differential equation with homogeneous initial conditions as given in Eq. (8). Solving the
resulting system of linear equations (7) and (8) in yðtÞ by the HB method may achieve the
approximate frequency and periodic solution. This method can be viewed as an improvement of
the HB method.

Using Eq. (6), we obtain the following Fourier series expansions:

sign ðx0Þ x0j jp ¼ Ap a1p cos tþ a3p cos 3tþ a5p cos 5tþ � � �
� �

; (9)

where

a1p ¼
4

p

Z p=2

0

cos tð Þ
p cos tdt; (10a)

a3p ¼
4

p

Z p=2

0

cos tð Þ
p cos 3tdt; (10b)

a5p ¼
4

p

Z p=2

0

cos tð Þ
p cos 5tdt: (10c)

We first set yðtÞ ¼ 0; i.e., no correction to x0ðtÞ takes place. Substituting yðtÞ ¼ 0; Eqs. (6) and (9)
into Eq. (7), and setting the coefficient of the resulting term cos t to zero yields

a1pAp � Ao2 ¼ 0 (11)
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which can be solved for o as a function of A; as

o ¼ o1pðAÞ ¼
ffiffiffiffiffiffi
a1p

p
.

Að1�pÞ=2: (12)

The approximate frequency has previously been obtained, see Eq. (3.3) of Ref. [2]. The first
approximation to the periodic solution is given by

u1ðtÞ ¼ A cos t; t ¼ o1pðAÞt: (13)

In view of Eq. (5), the second approximation to yðtÞ in Eq. (7) is taken of the form

yðtÞ ¼ c1ðcos t� cos 3tÞ (14)

which satisfies Eq. (8) automatically. From Eqs. (6), (9) and (14), we obtain

p sign ðx0Þx0½ 

p�1y ¼ 2pc1A�1½sign ðx0Þ x0j jp
 1 � cos 2tð Þ

¼ pc1Ap�1½ða1p � a3pÞ cos tþ ð�a1p þ 2a3p � a5pÞ cos 3tþ � � �
: ð15Þ

Substituting Eqs. (6), (9), (14) and (15) into Eq. (7), and setting the coefficients of the resulting
items cos t and cos 3t to zeros, respectively, lead to

�Ao2 þ a1pAp þ ½pAp�1ða1p � a3pÞ � o2
c1 ¼ 0; (16)

a3pAp þ ½9o2 � pAp�1ða1p � 2a3p þ a5pÞ
c1 ¼ 0: (17)

From Eq. (17) it can be derived that

c1 ¼ �a3pAp
	
½9o2 � pAp�1ða1p � 2a3p þ a5pÞ
: (18)

Substitution of Eq. (18) into Eq. (16) yields

9A2o4 � A1þpbpo2 � A2pcp ¼ 0 (19)

which can be solved for o as function of A; as

o2pðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

p þ 36cp

q
18

vuut ,
Að1�pÞ=2; (20)

where

bp ¼ 9 þ pð Þa1p þ 1 � 2pð Þa3p þ pa5p; (21)

cp ¼ pð�a2
1p þ a1pa3p � a1pa5p þ a2

3pÞ: (22)

The sign ‘‘+’’ preceding
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

p þ 36cp

q
in Eq. (20) has been determined by the condition that the

ratio o2p=o1p tends to 1. Furthermore, c1 in Eq. (18) can be obtained by substituting o with

o2pðAÞ in Eq. (20) which results in

c1pðAÞ

A
¼ �2a3p

�
bp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

p þ 36cp

q
þ 2p �a1p þ 2a3p � a5p

� �� �
: (23)
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Table 1

Comparison of some values of the frequencies of the nonlinear oscillators with various fractional powers

P oeAð1�pÞ=2 oMpAð1�pÞ=2 (Error) o1pAð1�pÞ=2 (Error) o2pAð1�pÞ=2 (Error) c1pðAÞ
	

A (%)

3/4 1.02496 1.01559(�0.91%) 1.02567(0.07%) 1.02484(�0.01%) 0.82

5/7 1.02866 1.00958(�1.86%) 1.02961(0.09%) 1.02850(�0.02%) 0.95

2/3 1.03365 1.02085(�1.24%) 1.03498(0.13%) 1.03343(�0.02%) 1.11

3/5 1.04075 1.01840(�2.15%) 1.04273(0.19%) 1.04041(�0.03%) 1.36

1/2 1.05164 1.06225(1.01%) 1.05491(0.31%) 1.05106(�0.05%) 1.73

3/7 1.05960 1.02282(�3.47) 1.06405(0.42%) 1.05880(�0.08%) 2.01

1/3 1.07045 1.04912(�1.99%) 1.07685(0.60%) 1.06928(�0.11%) 2.39

1/4 1.08018 1.06839(�1.09%) 1.08868(0.79%) 1.07860(�0.15%) 2.70

1/5 1.08613 1.04812(�3.50%) 1.09609(0.92%) 1.08426(�0.17%) 2.95

1/6 1.09013 1.06109(�2.66%) 1.10170(1.06%) 1.08805(�0.19%) 3.09

1/7 1.09302 1.04405(�4.48%) 1.10487(1.08%) 1.09077(�0.21%) 3.20

1/8 1.09519 1.05424(�3.74%) 1.10768(1.14%) 1.09282(�0.22%) 3.28

1/9 1.09689 1.04017(�5.17%) 1.10989(1.19%) 1.09442(�0.23%) 3.34

1/10 1.09826 1.04867(�4.52%) 1.11168(1.22%) 1.09569(�0.23%) 3.39

1/11 1.09938 1.03684(�5.69%) 1.11315(1.25%) 1.09674(�0.24%) 3.43

1/N 1.11072 1(�9.97%) 1.12838(1.59%) 1.10729(�0.31%) 3.85

C.W. Lim, B.S. Wu / Journal of Sound and Vibration 281 (2005) 1157–1162 1161
The second approximate periodic solution is then given by

u2ðtÞ ¼ ½A þ c1pðAÞ
 cos t� c1pðAÞ cos 3t; t ¼ o2pðAÞt: (24)

Note that, as p ! 0; we have from Eqs. (10a)–(10c)

lim
p!0

a1p ¼
4

p
; lim

p!0
a3p ¼ �

4

3p
; lim

p!0
a5p ¼

4

5p
: (25)

The use of Eqs. (21) and (22) yields

lim
p!0

bp ¼
104

3p
; lim

p!0
cp ¼ 0: (26)

Therefore, making use of Eqs. (20), (23), (25) and (26) yields

lim
p!0

o2pðAÞ ¼

ffiffiffiffiffiffiffiffi
104

27p

r ,
A1=2 � 1:10729

.
A1=2; lim

p!0

c1pðAÞ

A
¼

1

26
� 3:85%: (27)

The comparison of some numerical results with respect to the exact frequency oe of Gottlieb [2] is
presented in Table 1. The numerical results include the approximate frequency oMp obtained from

Eqs. (4.3), (4.6), (4.9), (4.12) and (4.14) of Gottlieb [2] with the Micken’s method [1], the
approximate frequency o1p calculated from Eq. (3.3) of Gottlieb [2] which is equivalent to the

first approximation presented in Eq. (12) here, and the second approximate frequency o2p derived

in Eq. (20). In addition, the corresponding values of the ratio c1pðAÞ=A are also shown in the

last column.
From the last column of Table1, it can be observed that the ratio c1pðAÞ=A of amplitude of

correction term to amplitude of oscillation is less than 3.85% for various fractional powers, which
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accounts for rationality of the linearization of governing equations (3) and (4) with respect to the
correction yðtÞ: Table 1 also indicates that the second approximate frequency in Eq. (20) is more
accurate than the first approximate frequency in Eq. (12) for the various fractional powers. The
last row in Table 1 corresponds to the limit of frequency for fractional power as p ! 0: It is
concluded that the method of Mickens [1] underestimates the frequency by 9.97%; the method of
Gottlieb [2] overestimates the frequency by 1.59%; while the method presented here improves the
approximation to an error with an upper bound of 0.31%.

In summary, an improved HB method has been presented to construct more accurate
approximation to frequencies of oscillators with nonlinear fractional powers. The present method
introduces linearization of governing equation to the HB method. Unlike the classical HB
method, linearization is carried out prior to harmonic balancing thus resulting in simple linear
algebraic equations instead of complicated nonlinear algebraic equations. Hence, we are able to
establish the approximate frequencies for the oscillators more directly. These approximate results
are valid for various fractional powers including the limiting case of vanishing power. In addition,
it does not require the presence of a small perturbation parameter necessary in the perturbation
method and thus it is valid for all amplitudes of oscillation. The approximate solutions derived
here are the best frequency approximation results as compared with the previous ones, and the
maximum relative error has been significantly reduced.
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